Common Hypercyclic Vectors for Families of Operators
نویسنده
چکیده
We provide a criterion for the existence of a residual set of common hypercyclic vectors for an uncountable family of hypercyclic operators, which is based on a previous one given by Costakis and Sambarino. As an application, we get common hypercyclic vectors for a particular family of hypercyclic scalar multiples of the adjoint of a multiplier in the Hardy space, generalizing recent results by Abakumov and Gordon and also Bayart. The criterion is applied to other specific families of operators.
منابع مشابه
Operators with Common Hypercyclic Subspaces
We provide a reasonable sufficient condition for a family of operators to have a common hypercyclic subspace. We also extend a result of the third author and A. Montes [22], thereby obtaining a common hypercyclic subspace for certain countable families of compact perturbations of operators of norm no larger than one.
متن کاملCommon Hypercyclic Vectors for Composition Operators
A continuous operator acting on a topological vector space X is called hypercyclic provided there exists a vector x ∈ X such that its orbit {T nx; n ≥ 1} is dense in X. Such a vector is called a hypercyclic vector for T . The set of hypercyclic vectors will be denoted by HC(T ). The first example of hypercyclic operator was given by Birkhoff, 1929 [3], who shows that the operator of translation...
متن کاملHypercyclic Behaviour of Operators in a Hypercyclic C0-Semigroup
Let {Tt}t≥0 be a hypercyclic strongly continuous semigroup of operators. Then each Tt (t > 0) is hypercyclic as a single operator, and it shares the set of hypercyclic vectors with the semigroup. This answers in the affirmative a natural question concerning hypercyclic C0-semigroups. The analogous result for frequent hypercyclicity is also obtained.
متن کاملSmall sets and hypercyclic vectors
We study the “smallness” of the set of non-hypercyclic vectors for some classical hypercyclic operators.
متن کاملAbout Subspace-Frequently Hypercyclic Operators
In this paper, we introduce subspace-frequently hypercyclic operators. We show that these operators are subspace-hypercyclic and there are subspace-hypercyclic operators that are not subspace-frequently hypercyclic. There is a criterion like to subspace-hypercyclicity criterion that implies subspace-frequent hypercyclicity and if an operator $T$ satisfies this criterion, then $Toplus T$ is sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016